Skip to main content  Contents  Index  
 Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   4.4   Row Operations as Matrix Multiplication (MX4) 
 
Learning Outcomes  
Subsection   4.4.1   Warm Up 
 
Activity   4.4.1 . 
 
Given a linear transformation \(T\text{,}\)  how did we define its standard matrix \(A\text{?}\)  How do we compute the standard matrix \(A\)  from \(T\text{?}\) 
Subsection   4.4.2   Class Activities 
 
Activity   4.4.2 . 
 
Tweaking the identity matrix slightly allows us to write row operations in terms of matrix multiplication.
 
(a)  
Which of these tweaks of the identity matrix yields a matrix that doubles the third row of \(A\)  when left-multiplying? (\(2R_3\to R_3\) )
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 2 & 2 & -2 \end{array}\right]
\end{equation*}
\(\displaystyle \left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\ 
0 & 0 & 1 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\ 
0 & 0 & 1 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\ 
0 & 0 & 2
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\ 
0 & 0 & 2 
\end{array}\right]\) 
 
 
 (b)  
Which of these tweaks of the identity matrix yields a matrix that swaps the first and third rows of \(A\)  when left-multiplying? (\(R_1\leftrightarrow R_3\) )
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 1 & 1 & -1 \\ 0 & 3 & 2 \end{array}\right]
\end{equation*}
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\ 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
0 & 1 & 0 \\ 
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\ 
1 & 0 & 0 \\
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
0 & 1 & 0 \\ 
1 & 0 & 0 \\
0 & 0 & 1 
\end{array}\right]\) 
 
 
 (c)  
Which of these tweaks of the identity matrix yields a matrix that adds \(5\)  times the third row of \(A\)  to the first row when left-multiplying? (\(R_1+5R_3\to R_1\) )
\begin{equation*}
\left[\begin{array}{ccc} \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \\ \unknown & \unknown & \unknown \end{array}\right]
\left[\begin{array}{ccc} 2 & 7 & -1 \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
=
\left[\begin{array}{ccc} 2+5(1) & 7+5(1) & -1+5(-1) \\ 0 & 3 & 2 \\ 1 & 1 & -1 \end{array}\right]
\end{equation*}
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\ 
0 & 0 & 5 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 0 \\ 
0 & 0 & 1 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
5 & 5 & 5 \\
0 & 1 & 0 \\ 
0 & 0 & 1 
\end{array}\right]\) 
 
\(\displaystyle \left[\begin{array}{ccc}
1 & 0 & 5 \\
0 & 1 & 0 \\ 
0 & 0 & 5
\end{array}\right]\) 
 
 
 
Fact   4.4.3 . 
 
If \(R\)  is the result of applying a row operation to \(I\text{,}\)  then \(RA\)  is the result of applying the same row operation to \(A\text{.}\) 
 
Scaling a row: \(R=
\left[\begin{array}{ccc}
c & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) 
 
Swapping rows: \(R=
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\) 
 
Adding a row multiple to another row: \(R=
\left[\begin{array}{ccc}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) 
 
  
Such matrices can be chained together to emulate multiple row operations. In particular,
\begin{equation*}
\RREF(A)=R_k\dots R_2R_1A
\end{equation*}
for some sequence of matrices \(R_1,R_2,\dots,R_k\text{.}\) 
 
Activity   4.4.4 . 
 
What would happen if you right -multiplied by the tweaked identity matrix rather than left-multiplied?
The manipulated rows would be reversed.
 
Columns would be manipulated instead of rows.
 
The entries of the resulting matrix would be rotated 180 degrees.
 
 
 
Activity   4.4.5 . 
 
Consider the two row operations \(R_2\leftrightarrow R_3\)  and \(R_1+R_2\to R_1\)  applied as follows to show \(A\sim B\text{:}\) 
\begin{align*}
A
=
\left[\begin{array}{ccc}
-1&4&5\\
0&3&-1\\
1&2&3\\
\end{array}\right]
&\sim
\left[\begin{array}{ccc}
-1&4&5\\
1&2&3\\
0&3&-1\\
\end{array}\right]\\
&\sim
\left[\begin{array}{ccc}
-1+1&4+2&5+3\\
1&2&3\\
0&3&-1\\
\end{array}\right]
=
\left[\begin{array}{ccc}
0&6&8\\
1&2&3\\
0&3&-1\\
\end{array}\right]
= 
B
\end{align*}
Express these row operations as matrix multiplication by expressing \(B\)  as the product of two matrices and \(A\text{:}\) 
\begin{equation*}
B =
\left[\begin{array}{ccc}
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown
\end{array}\right]
\left[\begin{array}{ccc}
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown\\
\unknown&\unknown&\unknown
\end{array}\right]
A
\end{equation*}
Check your work using technology.
 
Activity   4.4.6 . 
 
Let \(A\)  be any  \(4 \times 4\)  matrix.
 
(a)  
Give a \(4 \times 4\)  matrix \(M\)  that may be used to perform the row operation \(-5 R_2 \to R_2\text{.}\) 
(b)  
Give a \(4 \times 4\)  matrix \(Y\)  that may be used to perform the row operation \(R_2 \leftrightarrow R_3\text{.}\) 
(c)  
Use matrix multiplication to describe the matrix obtained by applying   \(-5 R_2 \to R_2\)  and then \(R_2 \leftrightarrow R_3\)   to \(A\)  (note the order).
Subsection   4.4.3   Individual Practice 
 
Activity   4.4.7 . 
 
Consider the matrix 
\(A=\left[\begin{matrix}2 & 6 & -1 &6\\ 1 & 3 & -1 & 2\\ -1 & -3 & 2 & 0\end{matrix}\right]\text{.}\)  Illustrate 
Fact 4.4.3  by finding row operation matrices 
\(R_1,\dots, R_k\)  for which
 
\begin{equation*}
\RREF(A)=R_k\cdots R_2R_1A.
\end{equation*}
If you and a teammate were to do this independently, would you necessarily come up with the same sequence of matrices \(R_1,\dots, R_k\text{?}\) 
 
Subsection   4.4.4   Videos 
 
Figure   45.    Video: Row operations as matrix multiplication
Exercises   4.4.5   Exercises 
 
Subsection   4.4.6   Sample Problem and Solution